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Abstract. In this paper we recall how the field theory formalism is very useful for computing 
the density of electronic levels in disordered materials, and we stress those characteristics of 
the associated field theory which are peculiar to this model. In particular, we show that the 
localisation transition associated with the mobility edge has rather strange properties from 
the point of view of pure field theory: a sound computation of the critical exponents 
associated with the mobility edge is rather difficult, due to this unusual behaviour. 

1. Introduction 

Since the first paper by Anderson (1958) on localisation of electrons, a lot of work has 
been done on the electronic structure of amorphous materials (for a review see Thouless 
(1974,1978)). If one neglects the electron-electron interaction, the problem is reduced 
to the computation of the levels of the Schrodinger operator 

HR -A + V ( X ) ,  (1) 
where V(x)  is a random potential dependent on the atomic structure of the material, 
and A is the D-dimensional Laplacian. In the simplest approach one studies only the 
case where V ( x )  is a white noise, i.e. where it has a Gaussian distribution with 
covariance 

V(X ) V(Y 1 = ga (x - Y ), (2) 
where g plays the role of coupling constant. In the rest of this paper we will consider 
only this case. 

The goal consists of computing the Green functions of the operator H R  from the 
mean over the random potential V(x) .  From the knowledge of the Green functions, 
one can extract physically interesting information such as the density of states, the 
conductivity of the system and the nature of the electronic states (localised or extended 
states). 

A possible approach to this problem consists of mapping it onto the problem of 
computing the Green functions of an appropriate field theory. This approach has been 
very successful, especially for the computation of the density of states; unfortunately 
less progress has been made in studying the behaviour of the conductivity near the 
mobility edge which separates localised from extended states. Indeed, the localisation 
transition, which is the field theoretical equivalent of the mobility edge, has rather 
unique characteristics which are not shared by any ‘real’ transition. Most of the troubles 
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736 G Parisi 

are due to the fact that the equivalent model of field theory is not a true field theory, but 
is the analytic continuation in a parameter of a bona fide field theory: in performing the 
analytic continuation, most of the physical intuition we have gathered may be lost 
(especially inequalities coming from positivity), and rather paradoxical situations can be 
reached. (This happens in the theory of spin glasses: see Parisi (1979, 1980).) 

The aim of this paper is to underline these difficulties and to stress the points in 
which the localisation transition differs from a normal transition. 

In 0 2 we review the general field theoretical formalism we use, while in § 3 we show 
how this formalism can be successfully used to compute the density of levels. In § 4 we 
study the appropriate perturbative expansion for the conductivity and see how long- 
range correlations are present in the conducting phase. In the last section we discuss 
and present the results obtained in the previous sections. 

2. The field theory formalism 

We want a representation for the following quantities: 

G R ( x - Y ) = G ~ ( ~ ,  Y ) ,  

G ( X ,  Y = ( X  I (HR - E)-' I Y >, 
I GI& - Y )  = I G v(x, Y )IZ, 

(3) 

where the bar denotes the mean over the random potential V. 
From the knowledge of these, one can compute the density of states p and the 

conductivity U, e.g. 

p = Im GR(0)/v. 

To this end we must consider the O ( N )  invariant Lagrqngian: 
N 2 

2 ( x > =  i l l  c [ (8 ,4 i )2-~4~1-g(  i = l  f 4;) 

where q5j are N-component fields. The generating functional 
functions of the field q5 is given by 

(4) 

( 5 )  

of the correlation. 

Using symmetry arguments, one finds that the two-field correlation function 
satisfies the relation (Economou and Cohen 1970, Nitzan et a1 1977, Thouless 1975, 
Aharony and Imry 1977, Edwards 1979) 

(4i ( x ) 4 j ( Y ) )  = G ( X  - Y )&,p (7) 

The theory (in particular G(x)) is well defined for any integer value of N; an analytic 
continuation in N to non-integer values can be made: for N = 0 one finds that 

GR(x) = G(x) .  (8) 

This result is very useful because it allows us to use the whole technology developed 
in the study of standard field theory, in particular the Feynman diagrammatic expansion 
and the renormalisation group. 
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In the same spirit one can introduce the Lagrangian 
N N 

i = l  i = l  
9 ( x )  = 1 [(a&: 1' + (a,(b7 1' -E(+:  1' - E((b7 )'I - g( (9) 

E is a priori a complex parameter and E denotes its complex conjugate. In the limit 
n + 0 the correlation functions of the field (b+ are identical to those of the field (b ; 
moreover one finds that 

[((bt )' + (4; 1'1') . 

(4: cx,(b: ( Y  )> = (4; ( x ) ( b i  ( Y ) ) ,  

C ((bt(x)(bi ( x ~ t ( ~  M ; ( Y  1) = SkjIGIk(x - Y ) *  
i = l  

(10) 
N 

The Green function IG l i (x )  is needed to study the presence of localised states: one 
expects that, if and only if localised states are present, the function I$l i (x)  defined by 

lim IGIk(x) Im E = I$lk(x) 
ImE-rO 

is non-trivial: I$lk(x) represents the square of the wavefunction of the localised states. 
The transition, as a function of the energy, from extended to localised states is 

characterised by the divergence of the correlation functions in the configuration space. 
This divergence, which is foreign to all the tradition in field theory, is possible here also 
because the functional integral in equation (6) is not well defined as it stands (the 
coupling constant has the wrong sign!) and it can be defined only after a rotation of the 
path of integration in the functional space. 

Let us present an example, which will be useful later, of the way in which a well 
known relation can be obtained in this formalism. We start from the relation 

1 1 -2 Im E 
H~ - E HR - E  - ( H ~ - E ) ( H ~ - E ) '  

If we bracket it with ( X I  Ix) and use the completeness of the states, we find 

GV(x,  x lE) -GV(XXIB)  = -2 I m E j  GV(x,  yIE)GV(y,  xlE) dDy (13) 

where we have written explicitly the dependence on the energy ( E )  of the Green 
functions (this was implicit in equation (3)). After the integration over the random field 
V, we obtain (Velicky 1969) 

GR(OIE) -GR(OIE) = -2 Im E I IGlk(y) dDy. (14) 

How do we recover equation (4)? If Im E = 0 the Lagrangian (9) would be invariant 
under a global O(2) transformation?, its infinitesimal form being 

S(b+(X) = ( b - b ) ,  s ( b - ( x )  = -(b+(x). (15) 

It is now a simple exercise in functional integral representations to derive the Ward 
identity relation in the presence of a symmetry breaking term (Jona-Lasinio 1964, 

t After this paper had been completed, a paper was published (Wegner 1979) in which equation (14) was 
derived from the Ward identities of the O(2) symmetry. However, the conclusions of this paper on the 
behaviour of the mobility edge are different from ours. 
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Parisi and Testa 1970). In this particular instance 

5 j [ (4+  (Y  )I2 - (4;  ( Y  ))7 dDY 
i = l  

and one of the corresponding Ward identities is 
N e  

the symmetry breaking term is 

(16) 

I ~ E  C J ( ~ ; : ( x ) ~ ~ ( z ) ~ + ( Y ) ~ ; ( Y ) ) ~ Y .  (17) 

Using the relations (7)-(lo), equation (14) follows from equation (17). If the density 
of states p (E)  is different from zero, as happens for all possible real values of the energy, 
the O(2) symmetry is spontaneously broken and the integral in the RHS of equation (4) is 
divergent, signalling the presence of long-range correlations, which may manifest 
themselves with a Goldstone boson. In reality (but we are not going to use this 
observation) the full symmetry group for Im E = 0 is 0 ( 2 N ) ,  which breaks down to 
O ( N )  x O(N) :  the group which is spontaneously broken is larger than 0(2) ,  at least for 
N greater than 1. 

i = l  

3. The density of levels 

Let us consider the Lagrangian (6); using the standard Feynman diagram technique, the 
Green functions can be expanded in series of the coupling constant g. No problems 
arise in perturbation theory when E is negative (positive mass). When E is positive, the 
mass in the Lagrangian becomes negative: in a conventional field theory one would shift 
the field in order to obtain a positive renormalised mass; here, nothing of this kind 
happens, and the Green functions for positive E are computed as an analytic continua- 
tion from negative E. The final Green functions are no longer real: their imaginary part 
is connected to the density of states of HR. Using this technique, one finds 

)e(E) .  (18) p ( ~ )  = E ( D - - ~ ) / ~ F ( ~ E ( C - ~ ) / ~  

Equation (18) is correct only if we take care of a finite number of orders of the 
perturbative expansion. The effect of mass renormalisation would shift the value E, 
which separates the two regions where p(E)  = 0 and p(E)  # 0 respectively. Equation 
(18) should be replaced by 

p(E)  = Im(E,-E)'D-2'/2F[g(E - E,)'D-4'/2]. (19) 

The first non-trivial problem consists of computing the behaviour of p(E)  near E,. 
As we shall see later, the situation is more complex and the solution of this problem is 
irrelevant to physics. 

In the coherent phase approximation (CPA) (Soven 1967, Elliot et a1 1974), one 
finds for negative E that the Fourier transform G ( p )  of G ( x )  satisfies 

(20) -E= m 2 -g (mD-2-~D-2) ,  G ( p )  = 1 / (p2+  m2), 

where A is a cut-off at large frequencies (if the Laplacian is written as a finite difference 
operator on a lattice with spacing a (see Thouless and Elzain 1978) A K a - ' ) ,  and we 
have neglected all the proportionality factors. 

As is well known, the solution of equation (20) gives 

p - (E - E,)*@ (E - E,) (CY =$) (21) 
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for E -E,. The sign of g is crucial. Now when can equation (21) be trusted? At the 
transition point, m 2  remains different from zero; however, the propagator 

has a pole at K 2  = 0, corresponding to a zero-mass bound state. Indeed, in field theory 
language the 44 interaction is attractive and not repulsive as usual: a two-particle bound 
state is produced and by decreasing the mass of the particles (m’), the mass of the bound 
state becomes zero when m2 # 0. The only infrared singularities are produced by the 
self interactions of this bound state. This problem can be easily studied using the 
standard machinery (Aharony and Imry 1977): one introduces a field qii = and 
derives an effective Lagrangian for the field qii; an interaction proportional to q3 is 
present, strongly suggesting that equation (21) holds only for D > Ds = 6 and that a can 
be expanded in powers of E = Ds - D when D < Ds.  Some explicit work is needed to 
verify that there are no difficulties which would forbid the realisation of this program, in 
particular if Ds is equal to 6, and not to 8, as happens in some polymer systems 
(Lubensky and Isaacson 1978). 

We do not enter into details because this problem is purely academic. Indeed, the 
unconventional sign of the coupling constant in equation (6) makes the Lagrangian 
unbounded from below also for E < 0. As a consequence, the perturbative expansion 
cannot be Borel summed, and the Green functions have an imaginary part proportional 
to exp(-l/g) also for E<O. This imaginary part can be computed semiclassically 
(Thouless and Elzain 1978, Cardy 1978), following the pioneering work of Zittartz and 
Langer (1966), Halperin and Lax (1966, 1967). This effect will give an imaginary part 
to E,, shifting it in the second sheet; the singularity at E, becomes an unphysical one and 
has a small influence on the ‘observable’ behaviour of p ( E )  for real E. This last quantity 
can be easily computed by matching the small coupling expansion with the non- 
perturbative results proportional to exp(-l/g). The first computation in this direction 
has been done by Thouless and Elzain (1978). In recent years much progress has been 
made in the understanding of the mutual relations between large-order behaviour of 
the perturbative expansion, the semiclassical non-perturbative contributions and the 
singularities of the Borel transform with respect to the coupling constant (for a review, 
see Parisi (1977), Zinn-Justin (1977)); consequently, the matching of the two expan- 
sions can be dpne with good precision (the results for the prefactor can be found in 
BrCzin and Parisi (1980)). It seems that, if no unforeseen difficulties are present, the 
computation of p(E)  at all the energies should be more or less straightforward. This is 
in contrast with the situation concerning localised states, as we will see in the next 
section. 

4. The conducting phase 

Let us study the Lagrangian (9). It is believed that for real E two regimes are possible: 
for E less than EL only localised states are present, while for E > EL the states are 
extended and the conductivity (+ is different from zero; we recall that the conductivity is 
given by the Kubo-Greenwood formula (Edwards 1958) 

(+ = lim E’ \ dDx xZIG2IR(x), I m E = E .  
e + O  
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At zero order in perturbation theory (g  = 0) 

IG'/R(X) - (1/xD-') exp(-e/xl), (24) 

and the conductivity U is infinite, as it should be, in the absence of impurities. The 
presence of long-range correlations implies that perturbation theory should be used 
with caution, especially at low momenta. 

In the language of relativistic field theory, the long-range behaviour lG21R(x) is due 
to a pinching singularity at small k when E becomes zero. Indeed, the Fourier transform 
1 d I i ( K )  is given by 

= J d D p  G(K  + p ) d ( p ) .  (25) 

In other words, when E + 0, pinching diagrams are the substitute of zero-mass particles. 
When g is different from zero, the Green function G becomes imaginary (Im m2 # 0) 
and the pinching diagrams, although dominant, do not correspond any more to 
long-range correlations; however, the Ward identity (17) implies that 

IGI i(0) cc P (E)/E. (26) 

If the function IGIk(K) is not divergent in the limit E + 0 at K # 0, equation (26) 
implies the presence of long-range correlations for E + 0. In this case one would expect 
that 

ldli(K)a I/K' for E = 0 (27) 

as normally happens in theories with spontaneously broken symmetries. 
One must be rather careful in choosing a perturbative expansion in this phase. It is 

well known that the standard g expansion cannot be used (Langer and Neal 1966): the 
behaviour of IGI/(K) changes from 1/K at g = 0 to 1/K2 at g # 0. 

The presence of this g-dependent crossover region in momentum space induces 
infrared divergences in the standard perturbative expansion, i.e. the final result will not 
be a C" function of g. 

Also, if we take care of this effect, the very presence of long-range correlations may 
produce infrared divergences if D < 4. However, the long-range correlations are 
connected to the spontaneous breakdown of the O(2) symmetry. The Ward identities 
tell us that these modes decouple in the low-momenta region (Adler's zeros) (for a 
review see Adler and Dashen (1968)), and they do not contribute to infrared diver- 
gences as far as D > 2 (this is the well known situation for Heisenberg ferromagnets 
(BrCzin and Zinn-Justin 1976)); equation (27) now becomes 

IGlicc 1/K2+ l / K D .  (28) 

It is clear that finite results may be obtained only if we take care simultaneously of all 
the Ward identities of the theory and of the presence of two different regimes at small K 
for g = 0 and g # 0. 

We do not want to discuss how this expansion may be realised. This is a technical 
problem which can be studied using one of the many field theoretical techniques we 
have at our disposal. The real unsolved problem consists in controlling the situation for 
D = 2. Wegner (1979) suggests that the usual theorems on absence of spontaneous 
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symmetry breaking imply that the O(2) Goldstone modes must be absent. How can this 
happen when p(E)  # O? The only possibility would be that 

lim eIdlk(~) # o for K # 0. (29) €+O 

The divergence of equation (26) would not imply a singularity at K = 0. 
It is usually believed that if equation (29) holds, the states are localised and the 

conductivity is equal to 0. Following Wegner, we would conclude that for D = 2 the 
states are always localised, as has been suggested by other authors on different grounds. 

However, we must always remember that our field theory is only an analytic 
continuation of a bona fide field theory, and one should be very careful in performing 
analytic continuations of inequalities. 

For example, if we consider a spin model, invariant under the group O(N) ,  there is a 
transition where the symmetry breaks down to O(N - l),  the number of Goldstone 
bosons is N - 1 and one would argue that in two dimensions a transition of conventional 
type would be possible only for N = 1. However, we know that for N = 0 the spin model 
corresponds to the self-avoiding walk (de Gennes 1972) which possesses no anomalous 
behaviour in D = 2, although -1 Goldstone bosons would be present below the 
transitiont. 

Now it is believed that in any dimensions, for large negative E, all the states 
contributing to p are localised and equation (29) holds. This result is confirmed by 
explicit computations (Cardy 1978), performed using the semiclassical approach, in 
which one finds that, for large negative E, 

-2 < N <2 .  

Whereas equation (30) holds also for N # 0, equation (29) may be satisfied only if 
N = 0. In these semiclassical computations the factors 1 / ~  arise from the integration 
over the collective coordinates of the instanton in the group space, or in the language of 
Zittartz and Langer as a pinching contribution in the collective coordinates. 

More precisely, if one takes care of the correct complex integration path in 
functional space, the O(2) group looks more like the O(1 , l )  group, i.e. a non-compact 
group. The integration over this non-compact group gives the terms divergent when 
E + O ,  i.e. the integration is damped by the terms proportional to E .  Indeed, the 
divergence of the Green functions below EL is a new phenomenon in field theory, and is 
connected to the presence of this non-compact symmetry group. 

If equation (29) holds for E <EL,  the absence of conduction for a two-dimensional 
system would imply that 

EL++CY) i f D + 2 .  (31) 

EL denotes the mobility edge and we expect that 

CT - ( E  -EL)". 

Unfortunately there is no known method of computing y. 
If we work in perturbation theory in g, EL = E, and the critical exponents y, a, etc., 

can be easily computed. In this scheme p(E)  = 0, E < EL, i.e. no state, localised or 
extended, is present for E < E,. 

f The author thanks des Cloizeaux and Sourlas for enlightening discussions on this point. 
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Including the effect of semiclassical configurations, one would obtain E,- EL- 
exp(-l/g), and the exponent y is fixed by the behaviour in the region where the 
semiclassical configurations are important. 

Long-range correlations, Goldstone bosons, semiclassical configurations and the 
n = 0 limit are all crucial ingredients for understanding the localisation transition, and 
one should take care of all of them together. It is still an open problem to understand 
how this can be done, in particular if in higher-dimensional spaces the system simplifies 
and y can be computed exactly. 

In order to underline those difficulties, which are peculiar to this problem, it is useful 
(following Nitzan et a1 1977) to introduce the fields 

(32) 1 +a 2 = exp(-i~/4)4:. 
*a = exp(i.rr/4~:, 

The Lagrangian (10) now becomes 

The corresponding functional integral is now convergent for E > 0: the introduction 
of the fields (1,’ and ** corresponds to fixing the correct integration path in functional 
space. Apart from the imaginary factor in front of the kinetical term, (33) looks like a 
conventional Lagrangian; however, in the limit E + 0, it becomes invariant under the 
O(N, N )  group, i.e. the group of linear transformations on 2N-dimensional space which 
leave invariant the form 

a = l  

As mentioned before, the O(N, N )  group contains as a subgroup, for N 1, the 
group 0(1, l), i.e. the two-dimensional Lorentz group. 

We face the problem of the restoration of the O(N, N )  symmetry which is spon- 
taneously broken in the conducting phase. If the symmetry is unbroken, some of the 
Green function will diverge when E + 0 as a consequence of the non-compactness of the 
symmetry group: an infinite contribution comes from the integration region where ($‘)2 

and (9’)’ are both large, but ( ~ 1 ) 2 - ( $ 2 ) 2  remains small. The contribution of this 
integration region is clearly depressed for E > 0. 

In other words, the necessity of performing a contour rotation in order to define the 
integrals for negative g transforms the symmetry group from O(2N)  to O(N, N )  and 
the non-compactness of the symmetry group is the origin of the pathologies of the 
model (e.g. the divergences of the Green functions for E + 0);  of course, the unusual 
properties of the O ( 2 N )  and O(N, N )  groups, in the limit N + 0, also contribute to the 
peculiar properties of the localisation transition. 

In order to get a deeper insight into the problem, it is convenient to introduce the 
fields 

QiF = $h$f, i, K = 1,2,  a, b = 1, N, 

transforming under the tensor representation of the O(N, N )  group, and to use the 
standard methods to derive an effective Lagrangian for the fields Q$. One could try to 
investigate the behaviour of the system near two dimensions, by studying if and how the 
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arguments of Wegner (1979) must be modified; alternatively, one could write down the 
most general cubic effective Lagrangian and try to use the standard machinery of the 
renormalisation group to study the critical behaviour near six dimensions. 

Both approaches seem quite promising, but they go beyond the aim of this paper, i.e. 
to underline the peculiarities that the localisation transition acquires when we try to 
describe it in field theoretical language. 
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